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Magnetotransport experiments have been performed on quantum cascade detectors. These experiments lead
to the identification of the different electronic transitions from subbands in one cascade period to subbands in
the following one. These transitions contribute to the total current flowing through the structure in the absence
of illumination. This dark current is well described within a simple model based on the sum of diffusion events
from one cascade to the next one through optical-phonon-mediated transitions. Using such a model, the optical
and electronic properties of such a complex heterostructure can be fully predicted without any other adjustable
parameter than the doping density. This opens the way to a full quantum design of an infrared detector, in
contrast with the phenomenological optimization of structures usually performed in this field.
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I. INTRODUCTION

The electronic transport properties of complex hetero-
structures are the subject of an increasing number of theoret-
ical studies. The quantum cascade detector1–4 �QCD� re-
cently proposed and realized as a photovoltaic version of
quantum well infrared photodetectors5 �QWIPs� is a typical
example of such a mesoscopic and complex structure. A pe-
riod contains an “active region” dedicated to the absorption
of infrared photons from the ground level to the upper levels
of the structure �E1� to E7 and E8 as shown in Fig. 1�. A
following part is optimized for the electron transfer through
the period. The QCD structure is designed to generate an
electronic displacement under illumination through a cascade
of quantum levels without the need of an applied bias volt-
age �see Fig. 1�. Owing to their photovoltaic behavior, QCDs
can work with higher doping levels than QWIPs and there-
fore achieve higher quantum efficiencies and longer integra-
tion times. QCDs can also be used at low voltage and present
lower dark currents. To optimize the performance of QCDs, a
deep understanding of the transport in these complex hetero-
structures is required. In a photovoltaic detector, the zero
voltage resistance �usually expressed as R0A where A is the
area of the device� is one of the relevant figures of merit to
characterize the dark current measured in the absence of il-
lumination. R0A can usually be described with an activation
energy Ea, corresponding to the energy of the transition re-
sponsible for electron transfer from one contact to the other.
In the case of QCDs, this picture has to be revisited because
the dark current generally involves several diagonal transi-
tions from one cascade to the next. In order to reveal all
these parallel contributions, magnetotransport measurements
as a function of temperature have been performed �reported
in Sec. III�, allowing a clear identification of the different
electronic paths that contribute significantly to the dark cur-
rent. This technique acts as a very effective tool for checking
that the quantum structure of the detector has been well de-
signed. To address this complexity, a model of the electronic

transport has been developed. This model �presented in Sec.
IV� takes into account all the possible electronic paths
through the structure which contribute as parallel channels to
the total current.

Let us first summarize the different rules for the design of
a QCD structure, which results in a trade-off. For a high
photoresponse, the first requirement is to achieve a large op-
tical matrix element between the fundamental level �E1�� and
the upper levels of the active region �E7/8 in our structure,
where E7/8 stands for “E7 and E8”�. A second important fac-
tor is to achieve a good extraction of the excited electrons
from the upper levels to the right of the structure, down
through the cascade �E7/8 down to Ej, j�6�. This implies
both a sufficient density of subbands in the cascade and a
good coupling between the different levels �through the
electron-phonon interaction�. Further, in the photovoltaic
mode the noise of the detector is given by the Johnson noise

FIG. 1. Conduction band diagram of one period of an 8-�m
QCD showing the energy levels. Note that the ground state of the
first QW belongs to the former period and is denoted E1�. The
arrows illustrate the electronic path during a detection event.
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4kBT /R0. A third requirement is therefore to realize a high-
resistance device. As will be shown in detail later, the total
conductance of a quantum cascade structure can be described
as the sum of the partial conductance of different paths in
parallel, each of these paths being an intersubband phonon-
mediated transition from one subband in a cascade “A” �Ei,
i� �1�−8��� to another subband in the next cascade “B” �Ej,
j� �1−8��. The total current density can then be expressed
as

J = e�
i�A

�
j�B

�Gij�V� − Gji�V�� , �1�

where e is the electronic charge and Gij is the global elec-
tronic transfer rate from subband i to subband j, which de-
pends on the applied bias V and can be calculated with the
introduction of the electron-phonon Hamiltonian. To lower
the conductance, it is necessary to “separate” two successive
cascades �thus lowering the G1�j�. This separation is never-
theless in contradiction with the two requirements for a high
photoresponse—i.e., a good optical coupling E1�→E7/8 and
a good relaxation coupling E7/8→Ej �j�6�. Intuitively, a
good trade-off is found when the dark current is governed by
the optical transition E1�→E7/8. An old principle of infrared
detection is found: it is desirable to have a dark transport
with an activation energy as close as possible to the optical
transition. According to the Gij formalism, the condition can
be expressed simply by stating that G1�j has to be of the
same order as G1�7 and G1�8. To calculate the different tran-
sitions rates, an accurate model is necessary. In addition,
experimental results of the different cross transitions are also
necessary to validate the model and the whole design pro-
cess. In the following, we will show that magnetotransport
experiments are a key tool for this purpose.

II. QCD STRUCTURE

The QCD under study is a GaAs /AlGaAs hetero-
structure with a detection wavelength of 8 �m. It
consists of 40 identical periods of 7 coupled GaAs quantum
wells �QWs�. Al0.34Ga0.66As barriers are used in order to
reach a conduction band offset of 275 meV. N doping
of the first QW �Nd=5�1011 cm−2� of each period allows
one to populate its first energy level E1� in the conduction
band with electrons. The layer sequence in Å starting
from the first quantum well is as follows:
68 / 56.5 / 20 / 39.55 / 23 / 31 /28 /31 /34 / 31 / 39 / 31 /48 /22.6
�the barriers are represented in boldface�. Figure 1 recalls the
principle of the device: owing to the absorption of a midin-
frared photon, an electron is excited from the fundamental
level of the structure E1� to the two excited states E7 and E8
which are delocalized across the first two QWs. High matrix
elements between E7/8 and other energy levels �E6 and E5 in
particular� allow the electron to be transferred to the right
QWs as a result of a series of LO-phonon relaxations through
the cascade of levels. The period is repeated in order to in-
crease the induced potential that results from this electron
transfer. By closing the circuit, a significant photocurrent is
expected without any applied bias. The studied samples are

100�100 �m2 square mesas obtained by reactive ion etch-
ing �RIE�.

III. MAGNETOTRANSPORT MEASUREMENTS

R0A is usually described with an activation energy Ea,
corresponding to the energy of the main electronic transition
in the structure. However, dark current �Idark� in QCDs often
originates from several parallel cross transitions for a fixed
temperature. As a result, a simple analysis taking into ac-
count one activation energy only does not accurately de-
scribe the system. In this context, our objective is to identify
by magnetotransport measurements the different transitions
involved in Idark as a function of the temperature.

QCDs are mounted inside an insert at the center of a
superconducting coil capable of a maximum field of 15 T
such that the magnetic field lines are perpendicular to the
QW planes and parallel to the current flow direction: I �B.
The experiment consists of measuring Idark along the device,
kept under constant voltage, while the magnetic field is
swept up to its maximum value for three different tempera-
tures, 40 K, 80 K, and 120 K. Current measurements have
been performed under a bias of V=0.1 V for T=80 K and
120 K. At 40 K, however, the current measured under 0.1 V
was too low and results in a noisy curve. Therefore, a higher
voltage of 1.5 V is applied to obtain a higher current value
and a reliable measurement. A typical result is illustrated in
Fig. 2�a� for a temperature of 120 K. The dark current shows
slight oscillations as a function of the magnetic field, super-
posed on a general behavior corresponding approximately to
a quadratic decrease. The latter contribution can be ac-
counted for by using a second-order polynomial fit aB2

+bB+c. For example, a possible fit is found taking a=
−3.52�10−6, b=−2.86�10−5, and c=5.75�10−3. Then, this
line shape is removed from the experimental Idark�B� curve
and gives �Idark shown in Fig. 2�b�. This latter curve reveals
a clear oscillating behavior which can be understood on the
basis of the following arguments.

FIG. 2. �a� Dark current as a function of the magnetic field for a
fixed value of the voltage 0.1 V at 120 K. �b� Dark current as a
function of the magnetic field where the contribution of the
magnetoresistance of the contacts has been subtracted.
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At zero magnetic field, all the quantum levels of a period
have plane-wave-like energy dispersion in the direction par-
allel to the layers and all the corresponding energy subbands
are nearly parallel �we do not consider the nonparabolicity
effects which are negligible in GaAs for our energies6,7�.
Most of the electrons are localized in the first energy sub-
band E1�. LO-phonon absorption and emission occur be-
tween this ground subband and several subbands of the
neighboring cascade. At 0 V, emission and absorption of
LO-phonon processes in Gij and Gji compensate each other,
resulting in zero current �the system is at equilibrium�. With
an applied bias, this equilibrium between emission and relax-
ation is broken and results in a dark current. When a mag-
netic field is applied, the subbands split into ladders of dis-
crete Landau levels given by

En,p = En
0 + �p +

1

2
���c, �2�

where n and p are integers, n is the index of the subband and
p the index of the Landau level, ��c=�eB /m� is the cyclo-
tron energy, and m� is the effective mass in GaAs. En

0 is the
energy of the subband edge at zero magnetic field. The effect
of the magnetic field on the QCD dark current is quite simi-
lar to what happens in a three-level active region of a quan-
tum cascade laser where electron scattering from the upper
state is modulated by a magnetic field.8 Indeed, depending on
the value of the magnetic field, the Landau-level arrange-
ment strongly influences the absorption or emission of opti-
cal phonons from the various 	1� , p
 levels to 	n ,0
, where
	n , p
 designates the p Landau level originating from sub-
band n. Figure 3 illustrates the effect of the Landau-level
quantization by a magnetic field on the dark current taking as
example level 	6,0
. Electrons are mainly localized in the

fundamental level E1� and are distributed over the different
Landau levels 	1� , p
 according to a Fermi-Dirac distribution.
At 8.8 T, considering a temperature such that 	1� ,5
 is popu-
lated, LO-phonon absorption from 	1� ,5
 to 	6,0
 is inhibited
because this process does not conserve energy. For a higher
value of the magnetic field �9.6 T�, levels 	1� ,5
 and 	6,0
 are
separated by the exact energy of a LO phonon ���LO
=36 meV in GaAs�, permitting LO-phonon absorption or
emission: electrons can short-circuit the cascade generating a
dark current. Dark current shows a maximum whenever an
electron on the 	1� , p
 level can be excited to a 	n ,0
 Landau
level by absorption of one LO phonon. This is called a mag-
netophonon resonance �MPR� and appears as oscillations of
the dark current as a function of the magnetic field. Maxima
of these oscillations correspond to a Landau level p in reso-
nance with the upper state minus ��LO. In Fig. 2�a�, we can
see that these oscillations only begin from 5 T. As Landau
levels are broadened by disorder, their finesse increases as
the square root of the magnetic field. Therefore, at high mag-
netic fields, the related Landau level becomes increasingly
populated, increasing the effect of MPRs. For a fixed tem-
perature, several transitions 1�→n participate simulta-
neously to dark current such that each transition generates its
own series of oscillations. Considering a transition from
	1� , p
 to 	n ,0
, values of the magnetic field B1�,p, which give
rise to resonant optical-phonon absorption, satisfy the fol-
lowing equation:

En,0 − E1�,p�B1�,p� = ��LO �3�

or

�En−1
0 − ��LO =

p�eB1�,p

m� , �4�

where �En−1
0 is the energy separation between subband 1 and

n at zero magnetic field. Oscillations appear periodically as a
function of the inverse of the magnetic field, the period of
which is given by

1

B1�,p−1
−

1

B1�,p
=

�e

m���En−1
0 − ��LO�

. �5�

The measurement of Idark�V ,B−1� allows us to determine
�En−1

0 . However, as Idark�V ,B−1� results from the superposi-
tion of several series of oscillations, it remains difficult to
identify clearly the periodicity relative to each contributing
transition. For this purpose, we performed a Fourier trans-
form of the corresponding �Idark�V ,B−1� curves in order to
extract the characteristic frequencies of each oscillation se-
ries.

Since the working temperature of our QCD is around
80 K, we first show the experimental results at this tempera-
ture �Fig. 4�: this is the most important result as far as the
device is concerned. For a full understanding of the system,
it is also very interesting to show the same results at 40 K
and 120 K �Figs. 5 and 6, respectively�.

In these figures, the Fourier transforms of the dark current
measurements are reported. To put in evidence the energy of
the electronic transitions, the Fourier transform amplitude is
plotted as a function of �E �through �E=�eB /m�+��LO�

B = 0 TB = 0 TB = 0 TB = 0 TB = 0 TB = 0 T

E

B =  0 T B =  8 . 8  T B =  9 . 6  T

´

´

´

´

´

´

´

´

´

´

´

´

´

´

´

FIG. 3. Schematic of the fundamental energy level E1� and the
level E6 at B=0 T and for two different magnetic fields. At B
=0 T, E1� and E6 have free-particle-like dispersion in the direction
parallel to the layers, E=�2k�

2 /2m�, where k� is the corresponding
wave number. The magnetic field breaks the subbands into two
ladders of Landau levels, represented by horizontal segments �solid
line for the Landau ladder originating from the fundamental n=1�
state and dotted line for the n=6 state�. The black arrows represent
LO-phonon absorption, allowed for B=9.6 T but forbidden for
8.8 T. For sake of clarity, all Landau levels have been lowered by
�eB /2m�.
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rather than with the initial B scale. The inset is a guide for
the eye to identify the electronic transitions observed in these
spectra. Table I provides the global transition rates G1�j—i.e.,
the number of transitions per second and per square meter
from the fundamental level 1� to the level j, with j
= �2, . . . ,8�, in the neighboring cascade �see Sec. IV�. For
each temperature, the experimental results extracted from
each spectrum can be faced to these theoretical calculations.

At 80 K �Fig. 4�, six peaks can be identified. The peaks at
52, 64, 83, 118, and 145 meV correspond to LO-phonon-
assisted cross transitions from the fundamental subband 1� to
subbands 3, 4, 5, 6, and 7 /8, respectively. These peaks are
well explained by the model since the calculation shows sig-
nificant transition rates G1�j. The last peak, at around
180 meV, is attributed to phonon absorption from subband
2� to a quasibound state E9� situated at the border of the
conduction band. This transition is possible because the sub-
band E2� is not totally empty and the overlap between these
two states E2� and E9� is significant. We can notice that the
two first peaks corresponding to phonon absorption from E1�

to E3 and E4 have high amplitudes. These amplitudes are
fairly large, in contradiction with the quantitative values of
G1�j. We attribute this effect to all the electron relaxations in
the cascade that also give rise to oscillation series in the
same energy range. As a result, a quantitative study in this
energy range is not accessible for the moment where inter-
cascade resonances are mixed with intracascade resonances
and/or elastic scattering. At higher energies, the model pro-
vides quasiequal global transition rates for transitions E1� to
E5, E6, and E7/8, in good accordance with the amplitude of
the relative peaks in the spectra. These measurements show
that the magnetic field is a powerful spectroscopic tool to
probe the different transitions responsible for dark current in
QCDs.

At 40 K �Fig. 5�, we identify four peaks. Two dominant
peaks at 49 meV and 63.5 meV originate from the oscillation
series associated with absorption of a LO phonon from E1� to
E3 and E1� to E4, respectively. Likewise at higher energies
the curve exhibits two peaks at 85 meV and 120 meV which
represent E1�→E5 and E1�→E6, respectively. For the same
reason as before a quantitative comparison of the amplitude
of these peaks is not accessible.

Finally, at 120 K �Fig. 6�, we observe the disappearance
of the transition E1�→E6 and the parallel enhancement of

FIG. 4. Fourier-transform amplitude of experimental �Idark vs
�E=�eB /m�+��LO at 80 K.

FIG. 5. Fourier-transform amplitude of experimental �Idark vs
�E=�eB /m�+��LO at 40 K.

FIG. 6. Fourier-transform amplitude of experimental �Idark vs
�E=�eB /m�+��LO at 120 K.

TABLE I. Values of the global transition rates G1�j for j
= �2, . . . ,8� at 40, 80, and 120 K. Bold characters correspond to the
highest values of the global transition rates for each temperature.

G1�j

�m−2 s−1� 40 K 80 K 120 K

1�→2 3.72�1014 6.40�1016 3.44�1017

1�→3 3.16�1015 6.76�1017 4.19�1018

1�→4 1.52�1015 3.01�1018 3.93�1019

1�→5 9.18�1013 5.10�1018 2.09�1020

1�→6 1.32�1012 5.03�1018 8.72�1020

1�→7 2.56�1010 3.49�1018 2.03�1021

1�→8 2.90�109 2.32�1018 2.46�1021
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both transitions E1�→E7/8 and E2�→E9�. These results are in
excellent agreement with the calculations of the model pro-
viding two equal global transition rates for transitions E1�
→E7 and E1�→E8 �see Table I�. We can add that a non-
negligible quantity of electrons are now present in level 9� at
high energy: relaxations of electrons from this last subband
will give rise to a higher-energy peak in the spectrum that is
present in Fig. 6 from 165 to 200 meV. Note that at this high
temperature, the intracascade transitions and/or elastic scat-
tering give a wide peak at low energy.

We have shown that the transitions contributing to the
dark current are highly temperature dependent. These results
can be understood by the fact that dark current is a result of
a compromise between the temperature-dependent number of
electrons available at a certain energy Ej −��LO and the ma-
trix element between the fundamental subband E1� and Ej in
the neighboring cascade. G1�j is proportional to both, for the
former preventing high-j Ej paths at low temperature and for
the latter decreasing the effect for low-j Ej paths owing to
the low spatial overlap between E1� and Ej. This explanation
appears very clearly in the expression of the global transition
rate Gij

a �the superscript a means that this rate describes only
phonon-absorption-mediated transitions from subband i to
subband j� �Ref. 9�

Gij
a = 


Ej−��LO

+�

Sij
a �E�f�E��1 − f�E + ��LO��noptD�E�dE ,

�6�

where Sij
a is the electron–LO-phonon transition rate,10 f�E�

and f�E+��LO� are the Fermi-Dirac occupation factors at E
and E+��LO, D�E� is the two-dimensional density of state
of the subband j, and nopt is the Bose-Einstein statistic func-
tion which accounts for the phonon population. In this ex-
pression, the compromise emerges from the matrix element
Sij and the two terms f�E� and f�E+��LO� that give approxi-
mately the electron density in the subbands i and j.

To conclude, as well as the establishment of the different
transitions involved in the transport, their importance as a
function of temperature is also demonstrated: at low tem-
perature, the very low occupation factor of high-energy lev-
els forbids their participation in the transport. At higher tem-
perature �more than 100 K�, these high-energy levels
dominate the transport thanks to their high matrix element
with E1�. The most interesting situation is at 80 K, as it is the
optimal temperature for a focal plane array at 8 �m wave-
length. At 80 K, the different transitions E1�→Ej seem to
have similar importance and are all identified. The “rule of
thumb” for the design of a QCD, as detailed in the Introduc-
tion, is found again: at this working temperature, G1�j for j
�6 should be slightly lower than or equal to the G1�7 and
G1�8. To put accurate numbers on these quantities, Sec. IV
concentrates on the modeling of these global transition rates
and of the current.

IV. THEORETICAL MODEL OF DARK TRANSPORT
IN QCDS

In this section, we will describe in detail the model that
leads to the G1�j shown in Table I and to the I�V� curve of the

QCDs. This model is able, without any adjustable parameter,
to give an excellent value of the resistance of a QCD. Start-
ing from the well-known electron–LO-phonon transition
rate,8 this model is based on an analogy with the p-n junc-
tion, an archetype system where two reservoirs �the conduc-
tion and valence band� are separated by a conduction bottle-
neck. In our case, it has been shown that intracascade global
transition rates are several orders of magnitude higher than
intercascade global transition rates such that two neighboring
cascades �A and B� act as two reservoirs separated by a
bottleneck. As a result, in the same way as in a p-n junction,
quasi-Fermi levels can be associated with each cascade and,
starting from this hypothesis, a simple expression can be
derived for the resistance of the device at zero bias:

R0A =
kBT

q2�
i�A

�
j�B

Gij

, �7�

where T is the temperature and the term Gij is defined by the
sum of Gij

a and Gij
e calculated at equilibrium—i.e., without

any applied voltage �in Gij
a and Gij

e , the superscript a or e
stands for phonon absorption or emission, respectively�. This
expression of R0A as a function of �i�A� j�BGij results from
a calculation of the current from the electrons going through
an imaginary surface separating the two reservoirs A and B.
A detailed derivation of Eq. �7� can be found in Ref. 9. Here,
instead of the classical R0A parameter, we will present the
results through the conductance G0, which is directly propor-
tional to the current through the device:

G0

A
=

1

R0A
=

q2

kBT
�
i�A

�
j�B

Gij . �8�

According to this expression, transitions appear very clearly
as many parallel paths for electrons to join cascade B from
cascade A. Expression �8� can also be seen as an Einstein
relation, linking a macroscopic transport property G0 to mi-
croscopic diffusion coefficients Gij. This relation is expected
since the transport is described as a diffusion process result-
ing from a nonhomogeneous chemical potential. This is in-
deed the case in QCDs where the current is calculated as a
result of a variation of the distribution of carriers as a func-
tion of the energy from cascade A to cascade B.

In Fig. 7, the experimental G0 /A is represented with
circles and compared to q2G1�j /kBT, where j= �2, . . . ,8� as a
function of 1000 /T. This figure shows very clearly the pro-
gressive implication of the different transitions to the dark
current as a function of temperature: at 300 K �1000 /T
=3.33�, as expected, the two curves corresponding to G1�8

and G1�7 are much closer to the experimental conductance.
Around 80 K, dark current implicates the quasitotality of the
diagonal transitions. This is an illustration of the rule of
thumb for the design of a QCD; as discussed previously, all
the transitions G1�j show the same order of magnitude, in
order to optimize the trade-off between a high escape prob-
ability in the cascade, a high optical coupling between E1�
and E7, and a low leakage between E1� and Ej, j�6. As
shown in Table I, G1�5 and G1�6 are slightly greater than G1�7
and G1�8 at 80 K, which can be understood in two ways:
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either this detector is considered as too noisy for a working
temperature of 80 K or it is much more suited for working at
higher working temperature. Finally, at 40 K, G0 /A is no
longer close to Gij /A, as the resistance in the cascade has
now to be taken into account and our model, which only
considers diagonal transitions, becomes invalid as the two
cascades are no longer in quasiequilibrium. Another discrep-
ancy between the model and the experiment at low tempera-
ture is that we have considered only the optical-phonon in-
teraction to transfer the electrons from one subband to
another.11–13 Other interactions such as interface roughness
scattering can become dominant at low temperature, as
shown by Leuliet et al.14 Other interactions such as impurity
scattering and alloy scattering can also play a significant
role.

Figure 8 compares the calculated �triangles� and measured
�circles� G0 /A: the agreement is excellent over five orders of
magnitude from 300 K to 80 K. This validates the assump-
tions that have been made at the basis of this model: the
restriction of the transfer mechanisms to the electron–
optical-phonon interaction �acoustical phonons, electron-
electron interactions, and interface roughness scattering have
been neglected� and quasiequilibrium hypothesis inside a
cascade. Nevertheless, at lower temperatures, a difference of
about one or two orders of magnitude exists between the
calculated and experimental conductance. In this range of
temperature, transitions inside the cascade are limiting the
dark current and now need to be taken into account to com-
pletely describe the electronic dark transport. The hypothesis
of two quasi-Fermi levels fails and the determination of the
voltage drop at each point of the structure is necessary to
calculate the current. Such a complex calculation is beyond
the scope of this paper and also not necessary as far as in-
frared detection is concerned, since thermal images do not
work at such low temperatures.

We can now complete these results by a comparison be-
tween the activation energy extracted from the experimental

and calculated R0A �see Fig. 9� given by the slope of the
logarithm of R0A as a function of 1000 /T. From room tem-
perature down to 120 K, the two curves exhibit the same
activation energy of 120 meV. Magnetotransport measure-
ments have shown that dark current also implicates higher-
energy transitions �E1�→E7/8 and E2�→E9��. This complex-
ity is hidden behind a single resistance measurement; this
shows the power of magnetotransport measurements. At
lower temperature, a discrepancy appears: at 80 K, the ex-
perimental activation energy is first higher �about 110 meV�
than the energy given by the theoretical predictions of the
model �80 meV�. Finally, at 40 K, the calculated activation
energy of 46 meV �transition E1�→E3� is very different from
the experimental value of 16–17 meV corresponding typi-
cally to the energy of a transition inside the cascade, showing
again that, at low temperature, the hypothesis of two sepa-
rated cascades at quasiequilibrium fails.

FIG. 7. G0 /A as a function of 1000 /T, where T is the tempera-
ture of the sample. Solid line with circles corresponds to the experi-
mental value while solid lines with symbols are the calculated
q2G1�j /kBT for j= �3, . . . ,8�.

FIG. 8. G0 /A as a function of 1000 /T, where T is the tempera-
ture of the sample. The solid line with circles corresponds to the
experimental value; the solid line with triangles is the calculated
value �q2�i=1

8 � j=1
8 Gij /kBT� provided by the model.

FIG. 9. Calculated �triangles� and experimental �circles� activa-
tion energy as a function of the temperature.
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In conclusion, two different regimes in the dark transport
are observed: from 300 K to 100 K, dark transport is domi-
nated by cross transitions that are in good agreement with the
model. The model considers that the electronic displacement
inside a cascade is several orders of magnitude faster than
between two consecutive cascades. In the second regime, at
lower temperatures, relaxations in the cascade are less effi-
cient. In particular, electrons are mostly located around k
=0 and cannot relax easily to subbands separated by less
than the energy of a LO phonon �E4−E3=17 meV, for ex-
ample�.

Up to now, we have shown that our model can be used to
calculate the R0A parameter in order to predict the Johnson
noise in photovoltaic QCDs at 0 V. However, the full I�V� of
the device is also interesting as, in some cases, working with
a small applied bias can become an advantage—for example,
in a camera. As this kind of device always presents a high
nonlinear resistance, it is essential to know the value of the
current along the QCD in order to adapt the applied bias to
the capacity of the readout circuit, the detector, and the cam-
eras’ characteristics �f number, background temperature, in-
tegration time�.

As explained before, the global current density is evalu-
ated by counting the electronic transitions between two con-
secutive cascades A and B. The global current density is
given by Eq. �1�. In Eq. �1�, Gij�V� is the sum of two global
transition rates, one for LO-phonon absorption and one for
LO-phonon emission. The current density J is given by:

J = q�
i�A

�
j�B

�Gij
a �V� − Gji

e �V� + Gij
e �V� − Gji

a �V�� . �9�

The difference Gij
a �V�−Gji

e �V� can be expressed as

Gij
a �V� − Gji

e �V� = 

Ej−��LO

+�

Sij
a �E�noptfA�E�

��1 − fB�E + ��LO��D�E�dE�1 − 	�E�� ,

	�E� =
fB�E + ��LO��1 − fA�E���1 + nopt�

fA�E��1 − fB�E + ��LO��nopt
.

In QCDs, as in many other photovoltaic detectors, the ap-
plied voltage is small. In this case, we can assimilate 
�E�
=noptfA�E��1− fB�E+��LO��D�E� to its value at equilibrium
given by 
eq�E�=noptf�E��1− f�E+��LO��D�E�. Expressing
the Fermi-Dirac function, 	�E� is simplified to

	�E� = exp�EF
B − EF

A

kBT
� = exp�− qV

kBT
� ,

leading us to a final expression

Gij
a �V� − Gji

e �V� = 

Ej−��LO

+�

Sij
a �E�
eq�E�dE�1 − exp�− qV

kBT
��

= Gij
a �0��1 − exp�− qV

kBT
�� .

The contribution of Gij
a −Gji

e to G0 /A can be simply ex-
pressed as Gij

a �0�q /kBT, and the nonlinear resistance or

asymmetry in the I�V� characteristics is furthermore included
in the simple exponential term. In this approximation, the
QCD shows a standard diode behavior with an ideality factor
equal to 1. We find a similar expression for Gij

e �V�−Gji
a �V�:

Gij
e �V� − Gji

a �V� = Gij
e �0��1 − exp�− qV

kBT
�� .

Summing the two last expressions, the total current density is
finally given by

J = j0�1 − exp�− qV

kBT
�� ,

with

j0 = q�
i�A

�
j�B

�Gij
a �0� + Gij

e �0�� = qGtot.

Figures 10 and 11 represent the experimental �circles� and
calculated �triangles� I�V� characteristics for a 100 �m
�100 �m area pixel at 120 K and 80 K, respectively.
At 120 K, using the global transition rate Gtot=7.66
�1021 m−2 s−1 provided by the model, the agreement be-
tween the experimental and calculated current is excellent
over a voltage range of �0.1 V. Let us recall that this model
requires no adjustable parameter other than the doping den-
sity. At 80 K, a discrepancy appears between the calculated
and experimental curves �Fig. 11�. This divergence was ex-
pected considering the disagreement between the experimen-
tal and calculated G0 /A �a factor of 2.3 between the two�. �A
perfect agreement can be obtained using a global transition
rate of 1.47�1019 m−2 s−1.� At 40 K, the calculations dis-
agree with the experimental I�V� characteristics because the
dark current is now limited by electronic relaxations within
the cascade �see above�.

FIG. 10. Calculated �triangles� �Gtot=7.66�1021 m2 s−1� and
experimental �circles� I�V� characteristics for a 100-�m pixel at
120 K.
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V. CONCLUSION

In this paper, magnetotransport experiments have been
performed on quantum cascade detectors. In these complex
multiple-quantum-well heterostructures, transport is shown
to result from electronic diffusion events from subbands to
subbands. Many different electronic paths are involved in the
transport as different parallel channels. Magnetotransport ex-
periments give a unique possibility to highlight these differ-
ent paths, showing separately the intersubband electron tran-
sitions significantly involved in the transport. In particular, it
is shown that low-energy transitions are preferred at low
temperature, while higher-energy transitions participate at
higher temperatures, where the electronic population in the
final subband is thermally activated. This shows that the con-

ception of a QCD should include the final working tempera-
ture as a crucial quantum design parameter.

A model describing the transport in quantum cascade
structures has also been developed. It relies on the modeling
of the current as a diffusion from two reservoirs at quasiequi-
librium �cascades A and B�, separated by a bottleneck. To
calculate the transfer rates between the subbands, a simple
perturbative approach has been developed �where they are
expressed as a function of the transfer rate at 0 V� consider-
ing the electron–optical-phonon interaction only. The model
and the important assumptions have been validated by sev-
eral experimental results: magnetotransport and R0A and I�V�
curves. R0A as a function of the temperature is fitted by our
model with an excellent approximation of more than 5 orders
of magnitude down to �100 K, with only the doping density
as an adjustable parameter. Furthermore, the I�V� curve of
the diode, which is important for detector integration with a
readout circuit, can also be predicted with the model, within
an excellent agreement also down to 100 K �for our example
of a QCD with an optical transition at 155 meV�. The agree-
ment begins to fail at lower temperature.

This kind of model is a crucial tool for the conception of
a QCD structure. The QCD is the first detector which can be
completely realized and optimized without the use of a phe-
nomenological parameter due to the fact that in a QCD, elec-
trons only occupy two dimensional states, allowing the real-
ization of a robust model. This is in strong contrast to other
detectors such as QWIPs where three-dimensional states in
the continuum result in complications such as capture and
escape probabilities. These are difficult to calculate and
therefore considered as adjustable parameters that have been
determined experimentally during the past 15 years.
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